Abstract

The sensitivity of engine performance to gas-dynamic phenomena in the exhaust system has been known for around 100 years but is still relatively poorly understood. The nonlinearity of the wave-propagation behaviour renders simple empirical approaches ineffective, even in a single-cylinder engine. The adoption of analytical tools such as engine-cycle-simulation codes has enabled greater understanding of the tuning mechanisms but for multi-cylinder engines has required the development of accurate models for pipe junctions. The present work examines the propagation of pressure waves through pipe junctions using shock-tube rigs in order to validate a computational model. Following this the effects of exhaust-system gas dynamics on engine performance are discussed using the results from an engine-cycle-simulation program based on the equations of one-dimensional compressible fluid flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.