Abstract

To investigate the predictive performances of exhaled breath volatile organic compounds (VOCs) for development of bronchopulmonary dysplasia (BPD) in infants born preterm. Exhaled breath was collected from infants born <30 weeks' gestation at days 3 and 7 of life. Ion-fragments detected by gas-Chromatography-mass-spectrometry analysis were used to derive and internally validate a VOC prediction model for moderate or severe BPD at 36 weeks postmenstrual age. We tested the predictive performance of the National Institute of Child Health and Human Development (NICHD) clinical BPD prediction model with and without VOCs. Breath samples were collected from 117 infants (mean gestation 26.8 [±1.5] weeks). Thirty-three percent of the infants developed moderate or severe BPD. The VOC model showed a c-statistic of 0.89 (95% confidence interval [CI] 0.80-0.97) and 0.92 (95% CI 0.84-0.99)) for the prediction of BPD at days 3 and 7, respectively. Adding the VOCs to the clinical prediction model in non-invasive supported infants resulted in significant improvement in discriminative power on both days (day 3: c-statistic 0.83 versus 0.92, p-value 0.04; day 7: c-statistic 0.82 versus 0.94, p-value 0.03). This study showed that VOC profiles in exhaled breath of preterm infants on non-invasive support in the first week of life differ between those developing and not developing BPD. Adding VOCs to a clinical prediction model significantly improved its discriminative performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call