Abstract

Cultured rat glioma C6 cells exfoliate membrane vesicles which have been termed ‘exosomes’ into the culture medium. The exosomes contained both stimulatory and inhibitory GTP-binding components of adenylate cyclase (the stimulatory, G s, and the inhibitory, G i, regulatory components) and β-adrenergic receptors but were devoid of adenylate cyclase activity. It was therefore apparent that the catalytic component of adenylate cyclase was either not exfoliated or was inactivated during the exfoliation process. The presence of G s or G i in the exosomes was detected by ADP ribosylation using [α- 32P]NAD in the presence of cholera or pertussis toxins, respectively. The exosomal concentration of each of the two components was estimated to be about one fifth of that of the cell membrane when expressed on a per mg protein basis. Exosomal G s was almost as active as the membrane-derived G s in its ability to reconstitute NaF- and guanine nucleotide-stimulated adenylate cyclase activity in membranes of S49 cyc − cells, which lack a functional G s. The ability of exosomal G s to reconstitute isoproterenol-stimulated activity, however, was much lower than that of membrane G s. The density of β-adrenergic receptors in the exosomes was much less than that found in the membranes. Although the exosomal receptors bound the antagonist iodocyanopindolol with the same affinity as receptors from the cell membrane, the affinity for the agonist isoproterenol was 13- to 18-fold lower in the exosomes. In addition, this affinity was not modulated by GTP in the exosomes. Thus, exfoliated β-adrenergic receptors seem to be impaired in their ability to couple to and activate G s. This was directly tested by coupling the receptors to a foreign adenylate cyclase using membrane fusion. The fusates were then assayed for agonist-stimulated activity. While significant stimulation of the acceptor adenylate cyclase was obtained using C6 membrane receptors, the exosomal receptors were completely inactive. Thus during exfoliation, there appear to be changes in the components of the β-adrenergic-sensitive adenylate cyclase that results in a nonfunctional system in the exosomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call