Abstract

Granite is found in many world heritage monuments and cities. It continues to be one of the most widely used stones in today's construction, given its abundance, uniformity and durability. Quarrymen traditionally cut this rock along its orthogonal slip planes, where splitting is easier. Ranked by ease of splitting, these planes are rift, grain and hardway. Granite is traditionally quarried along the rift plane where coplanar exfoliation microcracks coalesce developing a flat surface. This splitting surface minimizes the cost and effort of subsequent hewing. Rift plane was predominantly used on the fair face of ashlars in heritage buildings worldwide. Determining the petrographic and petrophysical behaviour of these three orthogonal splitting planes in granite is instrumental to understanding decay in ashlars and sculptures. The decay of building granite is different in each splitting plane.Alpedrete granite was the stone selected for this study based on the orientation and distribution of exfoliation microcracks and the characterisation of their implications for the anisotropy of petrophysical properties such as ultrasonic wave propagation, capillarity, air permeability, micro-roughness and surface hardness. Inter- and intracrystalline microcrack length and spacing were also measured and quantified.The findings show that the splitting planes in Alpedrete granite are determined by the orientation of exfoliation microcracks, which as a rule are generally straight and intracrystalline and determine the anisotropy of the petrophysical properties analysed.Splitting planes are the orientation that should be applied when performing laboratory tests for the petrographic and petrophysical properties of building granite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.