Abstract

AbstractThe exfoliation corrosion susceptibility and electrochemical impedance spectroscopy (EIS) of 7150 Al alloys with T6, T73, and RRA (retrogression at 175 °C for 3 h) tempers in EXCO solution were investigated. The anodic equilibrium precipitate η(MgZn2) is continuous or closely spaced at the grain boundaries in the 7150‐T6 Al alloy, resulting in its greatest susceptibility to exfoliation corrosion. The grain boundary η precipitates in the RRA and T73 treated 7150 Al alloys are coarsened and show a clear discontinuous nature; they possess similar exfoliation corrosion sensitivity and their exfoliation corrosion resistance is greatly increased. At the beginning of immersion in EXCO solution, the EIS plot of the 7150 Al alloys is composed of a capacitive arc in the high to medium frequency range and an inductive component in the medium to low frequency range. As immersion time is increased, exfoliation corrosion with different corrosion ratings occurs on the surface of the 7150 Al alloy with various tempers, two capacitive arcs appear in the high to medium and medium to low frequency ranges, respectively. The fitted medium to low frequency capacitance C2 of 7150‐T6 Al alloy, corresponding to the new surface caused by the exfoliation corrosion, is much greater than that of the T73 and RRA treated 7150 Al alloy, which is consistent with the greatest exfoliation corrosion susceptibility of the 7150‐T6 Al alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call