Abstract

Layered α-titanium phosphate intercalated with propylamine, Ti(HPO4)2·2C3H7NH2·H2O (α-TiPPr), has been synthesized by solid-vapour reaction and then exfoliated via a single-stage approach based on overnight stirring in aqueous medium. The obtained nanosheets were then functionalized using solid–liquid reaction with europium(III) nitrate aqueous solutions. The obtained materials were characterized by powder X-ray diffraction (PXRD), N2 adsorption–desorption isotherms at 77 K, scanning electron microscopy (SEM), transmission electron microscopy (TEM, SAED, STEM-EDX), atomic force microscopy (AFM) and photoluminescence spectroscopy (PL). The europium(III) sorption takes place via two distinct pathways, the first is the previously reported C3H7NH3+/[Eu(H2O)6]3+ ion-exchange process into the titanium–phosphate interlayer space of the multilayered α-TiPPr. The second pathway is the self-assembly of single-sheets which is provoked by electrostatic interactions between the negatively charged titanium–phosphate sheets and the Eu(III)-aqueous cations, leading to the formation of layered nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.