Abstract

Visible-light-driven H2 production by water splitting using photocatalysts has aroused widespread interest. For wide applications, an exploration of low-cost and high-performance cocatalysts to replace expensive and rare noble metals is highly desirable. Herein, highly exfoliated 2D Mo2C nanosheets (Mo2C) were prepared by liquid-phase ultrasonic exfoliation for the first time. As a photocatalyst for H2 production under visible light irradiation, Mo2C was hybridized on CdS nanoparticles (CdS) to be the composite Mo2C/CdS. Mo2C/CdS exhibits a remarkable H2 production rate of 7.7 mmol g−1 h−1 which is 6-, 16-, and 4-folds as high as those for bulk Mo2C/CdS, pure CdS, and Pt/CdS, respectively. The apparent quantum efficiency (AQE) of 3 wt% Mo2C/CdS is 86 % at 460 nm. The enhanced activity is attributed to the rapid transfer of photogenerated electrons from CdS to Mo2C as well as the presence of more active sites of Mo2C than bulk Mo2C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.