Abstract

Magnesium diboride (MgB2) has been explored as an alternative fuel to boron (B) due to its high energy density and the additive effect of magnesium (Mg) to promote B combustion. However, the primary oxidation of MgB2 does not occur unless it decomposes at a high temperature (830 °C), which makes ignition difficult and the reaction slow. Recently, two-dimensional (2D) exfoliated MgB2 nanosheets have attracted increasing attention due to their unique properties and potential applications in various fields. In this study, we investigate the potential of 2D exfoliated MgB2 nanosheets as solid fuels for overcoming the challenges of MgB2 combustion. We analyzed their oxidation behavior and energetic performance through material characterization and combustion tests under slow- and fast-heating conditions and compared their performance with those of bulk MgB2, B nanoparticles, and a B/Mg nanoparticle mixture. This study highlights the potential of MgB2 nanosheets as promising solid fuels with superior energetic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.