Abstract

The objectives of this study are to (a) evaluate the exergy and energy demand for constructing a hydrofractured shale gas well and determine its typical exergy and energy returns on investment (ExROI and EROI), and (b) compute the gas flow and intrinsic exergy analysis in the shale gas matrix and created fractures. An exergy system analysis of construction of a typical U.S. shale gas well, which includes the processes and materials exergies (embodied exergy) for drilling, casing and cementing, and hydrofracturing (“fracking”), was conducted. A gas flow and intrinsic exergy numerical simulation and analysis in a gas-containing hydrofractured shale reservoir with its formed fractures was then performed, resulting in the time- and two-dimensional (2D) space-dependent pressure, velocity, and exergy loss fields in the matrix and fractures. The key results of the system analysis show that the total exergy consumption for constructing the typical hydrofractured shale gas well is 35.8 TJ, 49% of which is used for all the drilling needed for the well and casings and further 48% are used for the hydrofracturing. The embodied exergy of all construction materials is about 9.8% of the total exergy consumption. The ExROI for the typical range of shale gas wells in the U.S. was found to be 7.3–87.8. The embodied energy of manufactured materials is significantly larger than their exergy, so the total energy consumption is about 8% higher than the exergy consumption. The intrinsic exergy analysis showed, as expected, very slow (order of 10−9 m/s) gas flow velocities through the matrix, and consequently very small flow exergy losses. It clearly points to the desirability of exploring fracking methods that increase the number and length of effective fractures, and they increase well productivity with a relatively small flow exergy penalty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.