Abstract

The heat pump system has been widely used in residential and commercial applications due to its attractive advantages of high energy efficiency, reliability, and environmental impact. The massive exergy loss during the isenthalpic process in the expansion valve is a major drawback of the heat pump system. Therefore, the Tesla turbine exergy analysis in terms of transiting exergy efficiency is investigated and integrated with the transcritical heat pump system. The aim is to investigate the factors that reduce exergy losses and increase the coefficient of performance and exergy efficiency. The contribution of this paper is twofold. First, a three-dimensional numerical analysis of the supercritical CO2 flow simulation in the Tesla turbine in three different geometries is carried out. Second, the effect of the Tesla turbine on the coefficient of performance and exergy efficiency of the heat pump system is investigated. The effect of the rotor speed and disk spacing on the Tesla turbine power, exergy loss, and transiting exergy efficiency is investigated. The results showed that at a lower disk spacing, the turbine produces higher specific power and transiting exergy efficiency. In addition, the coefficient of performance (COP) and exergy efficiency improvement in the heat pump system combined with the Tesla turbine are 9.8% and 28.9% higher than in the conventional transcritical heat pump system, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call