Abstract

In this paper, a one-dimensional model is proposed for analyzing the features of photovoltaic-thermoelectric (PV-TE) hybrid systems based on the thermodynamic laws. The system contains a photovoltaic solar cell and a thermoelectric module. The hybrid systems convert concentrated sunlight into electric power by the PV cell and then utilize the rest thermal energy by the TE module. The effects of the concentration ratio and the PV cells technology used on the performance of the PV-TE hybrid systems are discussed. Based on the first law of thermodynamics, the energy analysis is used to evaluate the output performance of the hybrid system. And the output electric power of the hybrid system is calculated. Moreover, the second law of thermodynamics is applied to the exergy analysis of the hybrid system. The exergy losses caused by the irreversible process of solar radiation converted into electric power and thermal energy are evaluated. The calculation results demonstrate that high concentration ratio and suitable PV cell used in the PV-TE hybrid system can promote the system output efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call