Abstract

This paper experimentally investigated exergetic performance analysis of vapor compression refrigeration system using R450a as a replacement for R134a at different evaporator and condenser temperatures within controlled environmental conditions. The exergetic performance analysis of the vapor compression refrigeration system with test parameters including efficiency defects in the components, total irreversibility, and exergy efficiency of the refrigeration system was performed. Findings showed that the total irreversibility and exergy efficiency of the vapor compression refrigeration system using R450A refrigerant were lower and higher than R134a by about 15.25–27.32% and 10.07–130.93%, respectively. However, the efficiency defect in the condenser, compressor, and evaporator of the R450A refrigeration system was lower than R134a by about 16.99–26.08%, 5.03–20.11%, and 1.85–15.85%, respectively. Conversely, efficiency defect in the capillary tube of the R450A refrigeration system was higher than R134a by about 14.66–78.97% under similar operating conditions. Overall, it was found that the most efficient component was the evaporator, and the least efficient component was the compressor for both refrigerants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.