Abstract
In the past decade, several articles have proposed the use of an exergy perspective to analyze physiological systems of the human body under different physical conditions. Such a perspective focuses on the exergy transformations and the efficiency of the biological processes. This may aid the medical field in assessments of a patient’s physical health by means of an index (exergy efficiency) based on the quality of the energy conversion in a given process within the human heart. As a follow-up, a model was developed to describe the evolution of the transvalvular pressure gradient in the aortic valve as a function of stenosis severity. This model was created using physiological data from 40 patients available in the literature, as well as 32 operating points from different bileaflet aortic valve prosthesis. A linear regression results in values around 14.0 kPa for the pressure gradient in the most severe case, evolving from 1.0 kPa for a healthy scenario. The thermodynamic model assesses the irreversibilities associated with energy conversion processes related to metabolism: exergy destroyed at the valves, exergy increased in the flow, and the power of the heart. Results indicate that destroyed exergy reaches values of 10 W (almost 10% of total basal metabolic rate of the whole body). Exergy efficiency is 15% for a healthy heart, decreasing as a function of the severity of the stenosis to values lower than 5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.