Abstract

Fuel cell technology is one of the promising systems for cleaner and competitive alternate power generation systems. When the high temperature fuel cells like solid oxide fuel cell and molten carbon fuel cell are integrated with the gas turbines, the total thermal efficiency of the combined cycle can be obtained greater than 60%. In the present work, thermodynamic analysis of SOFC-GT combined system (3MW) has been carried out for the fuel methane to evaluate the energy efficiency, exergy efficiency and exergy destruction of each component and compared with other fuels like coal gas and ethanol. The effect of compression ratio, turbine inlet temperature and ambient temperature of air on the performance of the system has been analysed. The outcome of the system modelling reveals that SOFC and combustion chamber are the main sources of exergy destruction. At the optimum compression ratio 9 and at the turbine inlet temperature 1,250 K, the total thermal efficiency and the exergy efficiency are found to be 63.3% and 60.85% respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.