Abstract

The exergy analysis of a 7250 m 3/d reverse osmosis (RO) desalination plant in California was conducted by using actual plant operation data, and an alternative design was investigated to improve its performance. The RO plant is described in detail, and the exergies across the major components of the plant are calculated and illustrated using exergy flow diagrams in an attempt to assess the exergy destruction distribution. The primary locations of exergy destruction were the membrane modules in which the saline water is separated into the brine and the permeate, and the throttling valves where the pressure of liquid is reduced, pressure drops through various process components, and the mixing chamber where the permeate and blend are mixed. The largest exergy destruction occurred in the membrane modules, and this amounted to 74.07% of the total exergy input. The smallest exergy destruction occurred in the mixing chamber. The mixing accounted for 0.67% of the total exergy input and presents a relatively small fraction. The second law of efficiency of the plant was calculated to be 4.3%, which seems to be low. The analysis of the alternative design was based on the exergy analysis. It is shown that the second law of efficiency can be increased to 4.9% by introducing a pressure exchanger with two throttling valves on the brine stream, and this saved 19.8 kW electricity by reducing the pumping power of the incoming saline water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.