Abstract

This article presents an exergy analysis of a combined engine-organic Rankine cycle configuration (E-ORC) using the exergy topological method. A detailed roadmap of exergy flow is presented using an exergy destruction chart to clearly depict the exergy accounting associated with each thermodynamic process. The analysis indicates that an ORC combined with an engine not only improves the engine thermal efficiency but also increases the exergy efficiency. Different organic fluids are evaluated in this article. Depending on the organic fluid employed, the thermal and exergy efficiencies could be increased by approximately 10 per cent. Parameters such as the thermodynamic influence coefficient and degree of thermodynamic perfection are identified as useful design metrics to assist exergy-based design of devices. This article also examines the effect of the pinch-point temperature difference (PPTD) on the E-ORC performance. Results show that the lower the PPTD the higher the thermal and exergy efficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.