Abstract

A mathematical investigation of a thermodynamical system linked with energy management and its impact on the environment, especially climate change, is presented in this study. In this regard, a numerical investigation of the flow and heat transfer of hydromagnetic third-grade liquid through a porous medium. The permeability of the medium and electrical conductivity of the fluid are assumed to be temperature functions. The appropriate mathematical formulations for momentum, energy, and entropy equations are presented in both dimensional and dimensionless forms. We obtained the numerical solutions using the spectral version of the Chebyshev collocation method and compared the result with the shooting Runge–Kutta method. Numerical results for velocity, temperature, entropy, and Bejan profiles are communicated through tables and graphs with adequate physical interpretation. The thermal stability of the thermo-fluid system that guarantees the prevention of spontaneous fluid heating that fuels climate change is also included in the analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call