Abstract

A refining column in the middle east that started its official production in 2020 provides its sour wastewater from all refinery plants to two sour water units (SWS1 and SWS2) to strip H2S and NH3. Sour gas from the refinery uses a lean amine solution for gas sweetening to absorb H2S in different absorbers. Rich amine with H2S is then stripped in two amine regeneration units (ARU1 and ARU2). The overhead of SWS and ARU units provide the acid gas feed to the sulphur recovery unit (SRU) to produce sulphur and prevent any acidic emissions against environmental regulations. First, the SWS1 unit is simulated using Aspen HYSYS V.11. A complete exergy study is conducted in the unit. Exergy destruction, exergy efficiency and percentage share in the destruction are calculated for all equipment. The highest exergy destruction rate was in the stripper with 5028.58 kW and a percentage share of 81.94% of the total destruction. A comparison was conducted between the exergy results of this study with two other exergy studies performed in the same refinery plant. The columns in the three studies showed the highest destruction rates exceeding 78% of the total destruction of each unit. The air coolers showed the second-highest destruction rates in their units with a percentage share exceeding 7% of the total destruction. The pumps showed the lowest destruction rates with values of less than 1% of the total destruction of each unit. Then, an individual simulation is conducted for stripper1 of SWS1, stripper2 for SWS2, regenerator1 of ARU1 and regenerator2 of ARU2. The individual simulations are combined in one simulation named combined simulation to compute the composition of acid gas from SWS and ARU units feeding SRU. Then, the SRU unit is simulated via a special package in HYSYS V.11 named SULSIM. The computed composition from SWS and ARU is exported to excel where it is linked with SRU simulation to calculate sulphur production. For the first time in any article in the world, all data feeding SWS, ARU, and SRU units are connected to a live system named Process Historian Database (PHD) to gather live data from the plant and perform plant optimization.

Highlights

  • Hydrogen sulphide is a hazardous toxic, corrosive pollutant produced from refinery industry

  • Validation results The validation concentrates on two main streams because these streams reflect the accuracy for all the simulations of the combined model

  • A refinery plant in the Middle East that started its official production in 2020 has an sulphur recovery unit (SRU) plant to recover sulphur from H2S with 99.9% Sulphur recovery efficiency (SRE)

Read more

Summary

Introduction

Hydrogen sulphide is a hazardous toxic, corrosive pollutant produced from refinery industry. It produces acid rain causing severe damages to equipment and for human health [1, 2]. Hydrogen sulphide is used as feed to sulphur recovery plants (SRU) to produce elemental sulphur [3, 4]. The main purpose of SRU plants is to prevent H2S emissions against environmental regulations in the world [5,6,7,8]. Processed sour water produced from refinery plants contains some hazardous contaminants. H2S and ammonia are considered as the main pollutants in sour water [11,12,13]. Strippers are designed to remove H2S and NH3 from sour water [14,15,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call