Abstract
The exergy of a high temperature proton exchange membrane fuel cell has been studied and analyzed in this research. In the present work a genetic algorithm code was developed using MATLAB software to calculate and optimize work, exergy, exergy efficiency and thermodynamic irreversibility. Also, a membrane fuel cell was modeled and simulated. The polarization curve is in good agreement with experimental data. The results were studied for current density range=0.05A/cm2 to 1A/cm2, temperature range=393K to 453K, pressure range=1atm to 3atm and membrane thickness=0.016–0.02cm. The optimum value of work was calculated 0.496W/cm2that was obtained at current density of 1A/cm2, temperature=453K, pressure=2.6atm and membrane thickness=0.016cm. The optimum value for irreversibility and exergy efficiency are0.007W/cm2and 0.46 at the same point. The optimum point of multi-objective function was obtained at current density 0.49363A/cm2, temperature 451.231K, pressure 2.5atm and membrane thickness 0.016cm. At this optimum point work, irreversibility and exergy efficiency were calculated as 0.2767W/cm2, 0.1542W/cm2 and 0.3545 simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.