Abstract

In order to improve the energy output of the MTPV system and reducing the NOx emission, a novel micro burner with a slinky projection shape channel for the MTPV system is proposed. To conduct the numerical simulation, 3-D models with detailed H2/air reaction mechanisms and the extended Zeldovich mechanism of NOx generation are employed. The influence of the slinky projection amplitude, slinky projection fins number, and the basic oscillating channel radius on the energy conversion characteristics and the NOx emission is investigated. The increase of the slinky projection amplitude and slinky projection fins number can improve the energy output and exergy efficiency, as well as reduce the NOx emission. When the slinky projection amplitude is 0.4 mm and the slinky projection fins number is 42, the exergy efficiency reaches the maximum value of 70.3%, while the energy output of MTPV reaches the maximum value of 4.99 W at 10 m/s. Meanwhile, the decrease of the basic oscillating channel radius can significantly decrease the NO mole fraction at the outlet. Generally, an efficient technique to increase energy output and reduce NOx emission for the MTPV system is to introduce a micro burner with a slinky projection shape channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call