Abstract

Finite time exergoeconomic performance of a combined cooling, heating and power generation (CCHP) plant composed of one endoreversible closed Brayton cycle and one endoreversible four-heat-reservoir absorption refrigeration cycle is investigated by using finite time thermodynamics. Heat conductance distribution among hot-, cold-, thermal consumer-, generator-, absorber-, condenser- and evaporator-side heat exchangers and compressor pressure ratio are optimized by taking the maximum profit rate as objective. Numerical examples show that there exists a sole group of optimal heat conductance distribution among hot-, cold-, thermal consumer-, generator-, absorber-, condenser- and evaporator-side heat exchangers and an optimal compressor pressure ratio which lead to the maximum profit rate. The effects of design parameters on the optimal performance of the CCHP plant are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.