Abstract
Space heating area of district heating system of combined heat and power (CHP) accounts for approximately one third of total space heating area in Chinese northern cities. In the extraction condensing turbine combined heat and power system based on district heating network, there are a large number of low-grade waste heat in the condenser, and exergy loss in the steam-water heat exchanger and water-water heat exchanger. Based on absorption heat pump technology, a new high-temperature district heating technology (DHSAHP) was presented to improve the current district heating system of CHP. Absorption heat pumps are used to recycle low-temperature waste heat in condenser. Absorption heat pump type heat exchanger is used to reduce temperature of return water in primary heat network, and decrease irreversible loss. Where, DHSAHP was analyzed by thermodynamics and economics method, and evaluated by exergetic efficiency, exergetic output cost, exergetic cost difference and exergoeconomic factor. Compared with current district heating system of CHP, DHSAHP can decrease about 31.3% steam consumption, increase about 75% transmission and distribution capacity of the primary heating network. The evaluation results show that the exergetic efficiency of new district heating system of CHP based on the absorption cycle technology is higher 10.41% than that of current district heating system of CHP, whereas its exergetic cost is lower 36.6¥/GJ than that of the conventional district heating system. With the increase of annual heating time, economy efficiency of new district heating system of CHP becomes better. The DHSAHP has higher energy utilization efficiency and better economic benefits and provides a kind of better technological method to solve the main problems of cuurent district heating with CHP in China.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.