Abstract

The scope of this study is to assess a solar driven combined power-refrigeration system working with carbon dioxide (CO2) through energy and exergy. The system consists of a supercritical Brayton cycle, a transcritical organic Rankine cycle, and a subcritical vapour compression refrigeration cycle. All three subsystems operate with carbon dioxide as the working fluid thanks to its zero-ozone depleting potential and negligible global warming potential. In addition, it is a sustainable working fluid. The combined system's heat energy demand is supplied by using parabolic trough solar collector system. Heat energy demand of organic Rankine cycle is supplied by the rejected heat of supercritical Brayton cycle; while the refrigeration cycle is driven by the power generated from the organic Rankine cycle. The results show that the energy efficiencies of the Brayton and organic Rankine cycles are found to be 12.9% and 4.47%, respectively, while the performance coefficient of the refrigeration cycle is determined to be 3.35. The energy efficiency of the overall system is determined to be 20.89%; while the exergy efficiency of the overall system is determined to be 12.95%. The exergy destruction rate of the whole system is calculated as 4,891 kW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.