Abstract

In the current context of global energy transition, the coupling of methanol production with offshore oil & gas operations appears to be a promising option to share infrastructures and convert renewable energy into valuable fuel. However, renewable methanol synthesis has not yet reached the commercial stage. Moreover, there is no evidence on studies integrating offshore multiple resources into methanol process. The novelty of this paper is a performance analysis of emerging routes for methanol production driven by offshore wind-solar energies through exergy and exergoeconomic techniques. Two production schemes (catalytic hydrogenation of carbon dioxide and direct radical oxidation of methane) are properly designed to produce a fixed methanol rate driven by offshore wind farm and solar-thermal plants at a given oil & gas rig. The results demonstrate that carbon dioxide-based route shows the lowest exergy destruction rate (66 MW) and total cost rate (1000 $/h) compared to other option. In conjunction with this, the methane-based route gives a satisfactory exergy efficiency of 87% against a mere 2% of other pathway, as well as higher potential to increase cost savings due to lower exergoeconomic factor. Furthermore, influences of varying some key variables on the proposed parameters of the two options are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.