Abstract

Analysis of the efficiency reserves of the most promising technologies for biodiesel production showed the feasibility of implementing the technological cycle in the following sequence: first, the transesterification of vegetable oil with supercritical alcohol, then the fluid supercritical СО2 extraction of the cooled reaction mixture; its separation in the field of centrifugal forces to separate glycerol from the target product, and then the separation of carbon dioxide by gas-liquid separation to obtain purified biodiesel and return carbon dioxide to the extraction stage. In accordance with the methodology of exergetic analysis, the influence of internal and external energy losses on the system is considered. The total number of internal exergetic losses associated with the irreversibility of any real processes included losses from the final temperature difference as a result of recuperative heat exchange between material and heat flows, as well as hydraulic losses caused by a sudden increase in the specific volume of the coolant when it enters the operating volumes of the devices from the pipeline. External losses are related to the conditions of the system interface with the environment. They are caused by the difference between the temperature of heat carriers and the ambient temperature, imperfect thermal insulation of equipment and condensate discharge. Exergetic analysis has shown that the exergetic efficiency for the technology of biodiesel production in supercritical conditions using steam-ejection refrigerating machine is 52.62%, which is 15–20% higher than that of known technologies. This characterizes the proposed technology as a heat-technological system with a high degree of thermodynamic perfection, which was achieved by organizing work in closed thermodynamic cycles and using exhausted heat carriers.

Highlights

  • Exergy based performance comparison of DI diesel engine fuelled with WCO15 and NEEM15 biodiesel // Environmental Progress & Sustainable Energy. 2019

  • Information about authorsSerdyukova senior lecturer, 208 general professional disciplines department, Military Training and Scientific Center of the Air Force “Air Force Academy named after Professor

Read more

Summary

For citation

Остриков А.Н., Шевцов А.А., Тертычная Т.Н., Сердюкова Н.А. Ostrikov A.N., Shevtsov A.A., Tertychnaya T.N., Serdyukova N.A. Сжиженный диоксид углерода отводится в резервуар и насосом высокого давления подается в теплообменник рекуператор 17, в котором нагревается до сверхкритической температуры и направляется в сверхкритический флюидный СО2-экстрактор 11 в режиме замкнутого цикла. Поток рабочего пара 2.4 разделяется на две части, одна из которых подается в змеевик реактора 6 для создания сверхкритических условий реакции переэтерификации, а другая в рекуперативный теплообменник 17 для нагрева сжиженного диоксида углерода до сверхкритической температуры. Отработанный рабочий пар после реактора 6 тора 11 отводится в рекуперативный теплообменник 15, в котором охлаждается до температуры 20–30 °С и подается в тарельчатый сепаратор для отделения глицерина от биодизельной смеси в поле центробежных сил. При отклонении избыточного дави рекуперативного теплообменника 17 подается в рекуперативный теплообменник 16, охлаждается до температуры конденсации, и часть образовавшегося конденсата отводится через терморегулирующий вентиль 36 на пополнение уровня воды в испарителе 33, а другая часть конденсата направляется в сборник конденсата 37.

Результаты и обсуждения
Наименование Name
Сверхкритический флюидный
Переданная Transmitted
Liquefied carbon dioxide
Waste water after cooling the biodiesel emulsion
Findings
Information about authors
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call