Abstract

The climate condition affects the performance of the combined-cycle power plants. The efficiency of the combined cycle is significantly influenced by the temperature, pressure and humidity of the air. When the ambient air temperature increases, the density of the air decreases, and it leads to a reduction of power generated by the gas turbine. In this work, the energy and exergy analysis of a commercial gas turbine, with inlet air cooling, was performed. The effects of fogging system on gas-turbine performance studied. For this aim, the energy and exergy balances were obtained for each piece of equipment. Calculations have been made for four different cases for the regarded gas turbine system. Furthermore, exergetic efficiency, exergy destruction rates and improvement potentials were obtained, and the results of the study demonstrated graphically. It is concluded that the net power output of the gas turbine system increased at lower inlet temperatures and exergy destruction rates occurred from highest to lowest as combustion chamber (CC), gas turbine (GT) and air compressor (AC), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.