Abstract
Abstract In this paper we propose a method for personalized recommendation of assignments (tasks or exercises) in an adaptive educational system. Our main goal is to help students to achieve better performance in tests. To achieve this we enhance existing adaptive navigation approaches by considering the limited time for learning. Our strategy is to cover all the required topics at least to some extent rather than learn few topics perfectly. The proposed method uses utility-based recommending and conceptbased knowledge modeling. We evaluate our approach in the domain of learning programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.