Abstract

BackgroundWith a rapidly aging population in Japan, locomotive syndrome is becoming an increasingly serious social problem. Exercise therapy using the lumbar type HAL, which is a wearable robot suit that can assist voluntary hip joint motion, would be expected to cause some beneficial effects for people with locomotive syndrome. The purpose of this study was to assess whether the deterioration of low back pain and any other adverse events would occur following HAL exercise therapy. Moreover, the changes of motor ability variables were evaluated.MethodsWe enrolled 33 participants (16 men, 17 women) with locomotive syndrome in this study. They received exercise training (sit-to-stand, lumbar flexion-extension, and gait training) with HAL (in total 12 sessions). We assessed the change of low back pain (lumbar VAS). More than 50% and 25 mm increase compared to baseline was defined as adverse events. One-leg standing time (OLST), 10-m walking test (10MWT), Timed Up and Go test (TUG), 1-min sit-to-stand test (1MSTS), FIM mobility scores and EQ-5D were measured.ResultsOf the 33 participants, 32 (16 men, 16 women) (97.0%) completed all 12 exercise training sessions using the lumbar type HAL. One woman aged 82 years withdrew because of right upper limb pain after the second session regardless of the use of HAL. There was no participant who had deterioration of low back pain. Any other adverse events including external injuries and/or falling, skin disorders, uncontrollable cardiovascular or respiratory disorders, and other health disorders directly related to this exercise therapy did not occur. Several outcome measures of motion ability including OLST, TUG and 1MSTS, EQ VAS and lumbar pain improved significantly after this HAL training.ConclusionsAlmost all patients with locomotive syndrome completed this exercise training protocol without any adverse events related to HAL. Furthermore, balance function variables including OLST, TUG and 1MSTS improved after this HAL exercise therapy even though mobility function variables including 10MWT and FIM mobility scores did not show any significant change. These findings suggest that the exercise therapy using the lumbar type HAL would be one of the options for the intervention in locomotive syndrome.

Highlights

  • With a rapidly aging population in Japan, locomotive syndrome is becoming an increasingly serious social problem

  • The exclusion criteria were as follows: (1) skin disorders prohibiting the attachment of the electrodes; (2) inadequately controlled cardiovascular or respiratory disorders interfering with exercise therapy; (3) severe dementia that prohibits understanding of the training program using hybrid assistive limb (HAL); (4) lower limb joints disorders that may seriously affect the results of this study

  • The medical comorbidities affecting locomotive function were lumbar spondylosis in 13 cases, cerebrovascular disease in 12 cases, lumbar canal stenosis in 8 case, osteoarthritis of the knee in 7 cases, osteoporosis in 7 cases, osteoporotic vertebral fracture in 5 cases, parkinsonism in 3 cases, proximal femoral fracture in 2 cases, cervical spondylotic myelopathy in 1 case, and spinal cord injury in 1 case

Read more

Summary

Introduction

With a rapidly aging population in Japan, locomotive syndrome is becoming an increasingly serious social problem. Exercise therapy using the lumbar type HAL, which is a wearable robot suit that can assist voluntary hip joint motion, would be expected to cause some beneficial effects for people with locomotive syndrome. With a rapidly aging population in Japan, elderly patients with disorders relating to motor function are becoming an increasingly serious social problem [2]. Locomotive syndrome is defined as a condition in which people have loss of mobility caused by degeneration of locomotive organs and require nursing care services due to disorders related to motor function [3, 4]. Less invasive therapies such as exercise with the use of robotic-assisted devices are required for elderly people to prevent injury due to excessive physical load

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call