Abstract

Aim: Dysfunction of the cardiac ryanodine receptor (RyR2) is an almost ubiquitous finding in animal models of heart failure (HF) and results in abnormal Ca2+ release in cardiomyocytes that contributes to contractile impairment and arrhythmias. We tested whether exercise training (ET), as recommended by current guidelines, had the potential to stabilize RyR2-dependent Ca2+ release in rats with post-myocardial infarction HF.Materials and Methods: We subjected male Wistar rats to left coronary artery ligation or sham operations. After 1 week, animals were characterized by echocardiography and randomized to high-intensity interval ET on treadmills or to sedentary behavior (SED). Running speed was adjusted based on a weekly VO2max test. We repeated echocardiography after 5 weeks of ET and harvested left ventricular cardiomyocytes for analysis of RyR2-dependent systolic and spontaneous Ca2+ release. Phosphoproteins were analyzed by Western blotting, and beta-adrenoceptor density was quantified by radioligand binding.Results: ET increased VO2max in HF-ET rats to 127% of HF-SED (P < 0.05). This coincided with attenuated spontaneous SR Ca2+ release in left ventricular cardiomyocytes from HF-ET but also reduced Ca2+ transient amplitude and slowed Ca2+ reuptake during adrenoceptor activation. However, ventricular diameter and fractional shortening were unaffected by ET. Analysis of Ca2+ homeostasis and major proteins involved in the regulation of SR Ca2+ release and reuptake could not explain the attenuated spontaneous SR Ca2+ release or reduced Ca2+ transient amplitude. Importantly, measurements of beta-adrenoceptors showed a normalization of beta1-adrenoceptor density and beta1:beta2-adrenoceptor ratio in HF-ET.Conclusion: ET increased aerobic capacity in post-myocardial infarction HF rats and stabilized RyR2-dependent Ca2+ release. Our data show that these effects of ET can be gained without major alterations in SR Ca2+ regulatory proteins and indicate that future studies should include upstream parts of the sympathetic signaling pathway.

Highlights

  • Current guidelines recommend exercise training (ET) as part of rehabilitation programs after myocardial infarction (MI) and for patients with heart failure (HF) [1, 2]

  • All rats were examined by echocardiography before randomization to ET or standard sedentary conditions (SED) (Figure 1A)

  • We focused on RyR2 and the FIGURE 1 | long axis are shown for sham-SED (C), sham-ET, HF-SED, and HF-ET rats

Read more

Summary

Introduction

Current guidelines recommend exercise training (ET) as part of rehabilitation programs after myocardial infarction (MI) and for patients with heart failure (HF) [1, 2]. An almost ubiquitous finding in animal models of post-MI HF is a dysfunction of the cardiac ryanodine receptor (RyR2), i.e., the Ca2+ release channel of the sarcoplasmic reticulum (SR) [11, 12]. This channel is essential in normal cellular Ca2+ handling and excitation–contraction coupling [13]. Inhibition of SR Ca2+ leak has been found to prevent arrhythmias in animal models of HF, as well as arrhythmogenic events in cardiac tissue taken from patients with HF, and is a potential future therapeutic strategy [15, 16]. There is a scarcity of data that support such an effect of ET in post-MI HF, and there is a need for rigorous experimental data from clinically relevant models

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call