Abstract

This study aimed to determine the effect of exercise training on preventing lipotoxic cardiomyopathy and to investigate the role of the 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and miR-344g-5p in cardiomyocytes. Male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 wk then began swimming exercise or remained sedentary for 8 wk. Thereafter, cardiac function was assessed by echocardiography, and heart tissue and plasma were collected for further measurements. The molecular mechanism of exercise was investigated after treating Hmgcs2 siRNA in palmitate-induced neonatal mouse cardiomyocytes. HFD induced myocardial hypertrophy and fibrosis and reduced coronary reserve and cardiac function. HMGCS2 levels increased, but junctophilin-2 (JPH2) levels decreased in HFD mice hearts. Such effects were attenuated by swimming exercise. Mechanistically, Hmgcs2 silencing prevented apoptosis and caspase-3 cleavage and elevated the expression of JPH2 in palmitate-stimulated cardiomyocytes. In addition, exercise promoted miR-344g-5p expression in HFD hearts. The overexpression of miR-344g-5p by chemical mimic reduced HMGCS2, apoptosis, and caspase-3 cleavage and elevated JPH2 expression in palmitate-induced cardiomyocytes. Our results suggest that exercise limits lipid metabolic disorder, cardiac hypertrophy, and fibrosis and aids in the prevention of lipotoxic cardiomyopathy. Exercise-mediated cardioprotection by upregulating miR-344g-5p, which targets Hmgcs2 mRNA, prohibits HMGCS2 upregulation and thus lipotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call