Abstract
Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is caused by mutations in the cardiac ryanodine receptor (RyR2) that lead to disrupted Ca(2+) handling in cardiomyocytes and ventricular tachycardia. The aim of this study was to test whether exercise training could reduce the propensity for arrhythmias in mice with the CPVT1-causative missense mutation Ryr2-R2474S by restoring normal Ca(2+) handling. Ryr2-R2474S mice (RyR-RS) performed a 2 week interval treadmill exercise training protocol. Each exercise session comprised five 8 min intervals at 80-90% of the running speed at maximal oxygen uptake (VO2max) and 2 min active rest periods at 60%. VO2max increased by 10 ± 2% in exercise trained RyR-RS (ET), while no changes were found in sedentary controls (SED). RyR-RS ET showed fewer episodes of ventricular tachycardia compared with RyR-RS SED, coinciding with fewer Ca(2+) sparks and waves, less diastolic Ca(2+) leak from the sarcoplasmic reticulum, and lower phosphorylation levels at RyR2 sites associated with Ca(2) (+)-calmodulin-dependent kinase type II (CaMKII) compared with RyR-RS SED. The CaMKII inhibitor autocamtide-2-related inhibitory peptide and also the antioxidant N-acetyl-l-cysteine reduced Ca(2+) wave frequency in RyR-RS equally to exercise training. Protein analysis as well as functional data indicated a mechanism depending on reduced levels of oxidized CaMKII after exercise training. Two weeks of detraining reversed the beneficial effects of the interval treadmill exercise training protocol in RyR-RS ET. Long-term effects of interval treadmill exercise training reduce ventricular tachycardia episodes in mice with a CPVT1-causative Ryr2 mutation through lower CaMKII-dependent phosphorylation of RyR2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.