Abstract

Our laboratory has previously shown an attenuation of hypoxic pulmonary hypertension by exercise training (ET) (Henderson KK, Clancy RL, and Gonzalez NC. J Appl Physiol 90: 2057-2062, 2001), although the mechanism was not determined. The present study examined the effect of ET on the pulmonary arterial pressure (Pap) response of rats to short- and long-term hypoxia. After 3 wk of treadmill training, male rats were divided into two groups: one (HT) was placed in hypobaric hypoxia (380 Torr); the second remained in normoxia (NT). Both groups continued to train in normoxia for 10 days, after which they were studied at rest and during hypoxic and normoxic exercise. Sedentary normoxic (NS) and hypoxic (HS) littermates were exposed to the same environments as their trained counterparts. Resting and exercise hypoxic arterial P(O2) were higher in NT and HT than in NS and HS, respectively, although alveolar ventilation of trained rats was not higher. Lower alveolar-arterial P(O2) difference and higher effective lung diffusing capacity for O2 in NT vs. NS and in HT vs. HS suggest ET improved efficacy of gas exchange. Pap and Pap/cardiac output were lower in NT than NS in hypoxia, indicating that ET attenuates the initial vasoconstriction of hypoxia. However, ET had no effect on chronic hypoxic pulmonary hypertension: Pap and Pap/cardiac output in hypoxia were similar in HS vs HT. However, right ventricular weight was lower in HT than in HS, although Pap was not different. Because ET attenuates the initial pulmonary vasoconstriction of hypoxia, development of pulmonary hypertension may be delayed in HT rats, and the time during which right ventricular afterload is elevated may be shorter in this group. ET effects may improve the response to acute hypoxia by increasing efficacy of gas exchange and lowering right ventricular work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call