Abstract

Oxytocinergic and vasopressinergic brain stem projections have been shown to play an important role in mediating cardiovascular adjustments during exercise training (ET). The aim of the present work was to determine whether the intrinsic excitability of hypothalamic neurons giving rise to brain stem peptidergic projections is altered as a consequence of ET. Whole cell patch-clamp recordings were obtained from nucleus of the solitarii tract (NTS)-projecting paraventricular nucleus of the hypothalamus (PVN) neurons and from supraoptic nucleus (SON) and PVN magnocellular cells (MNCs), in hypothalamic slices obtained from sedentary (S) and ET rats. Our results indicate that intrinsic excitability of PVN neurons that innervate the NTS (PVN-NTS) is enhanced by ET, resulting in a more efficient input-output function (increase number of evoked actions potentials, steeper frequency/current relationships and slower decaying frequency/time relationships). Changes in input-output function were accompanied by smaller hyperpolarizing afterpotentials (HAPs) and afterhyperpolarizing potentials (AHPs), during and after trains of spikes, respectively. On the other hand, a decreased efficacy in the input-output function was observed in SON/PVN MNCs during ET. Altogether, our results indicate that ET differentially affects the intrinsic excitability of autonomic and neurosecretory SON and PVN neurons. Increased excitability in PVN-NTS neurons may contribute to enhanced release of OT and VP peptides in the dorsal brain stem, and cardiovascular fine-tuning during exercise training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.