Abstract
Glucosamine (GlcN), which has been reported to induce insulin resistance (IR), is a popular nutritional supplement used to treat osteoarthritis in menopausal women. We previously demonstrated that GlcN treatment caused IR in ovariectomized rats by reducing the expression of glucose transport protein subtype 4 (GLUT-4) in skeletal muscle. In the present study, we hypothesized that endurance exercise training can reverse GlcN-induced IR. Fifty female rats were randomly divided into five groups with 10 rats in each group: (1) sham-operated group; (2) sham-operated group with GlcN treatment for 14 days; (3) ovariectomy (OVX) group; (4) OVX with GlcN treatment; and (5) OVX with GlcN treatment followed by exercise training (running program) for 8 weeks. Fasting plasma glucose increased in the OVX + GlcN group, and fasting plasma insulin and the homeostasis model assessment-insulin resistance (HOMA-IR) were significantly higher only in this group. After the rats received exercise training for 8 weeks, no increase in the fasting plasma glucose, insulin, or HOMA-IR was observed. In an intraperitoneal glucose tolerance test, the plasma glucose, plasma insulin, HOMA-IR, and glucose-insulin index were significantly elevated only in the OVX with GlcN treatment group. However, the plasma glucose, plasma insulin, HOMA-IR, and glucose-insulin index decreased after exercise training for 8 weeks, implying that GlcN-induced IR in OVX rats could be reversed through exercise. A histological analysis revealed that exercise training can reduce islet hypertrophy and maintain GLUT-4 in skeletal muscle. Exercise training can alleviate IR in OVX rats treated with GlcN. Islet hyperplasia was subsequently prevented. Preserving GLUT-4 expression may be one of the mechanisms by which exercise prevents IR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.