Abstract
We tested the hypothesis that adaptations in peripheral arterial vasoreactivity are induced by exercise training. Male rats were trained to run on a treadmill at 30 m/min (15 degrees incline) for 1 h/day 5 days/wk for 10-12 wk. Efficacy was indicated by a 51% increase (P < 0.05) in citrate synthase activity in soleus muscle of exercise-trained (ET) rats compared with that of sedentary (SED) control rats. Responses to vasoactive compounds were examined in vitro using rings of abdominal aorta. Maximal isometric contractile tension evoked by KCl, norepinephrine (NE), and phenylephrine were not different between groups; sensitivity to phenylephrine was also not different between groups. However, sensitivity was lower for both KCl and NE in vessels from ET animals. Endothelium removal did not influence KCl sensitivity but did abolish the difference in NE sensitivity of vessel segments between ET and SED animals. Maximal vasodilator responses induced by acetylcholine (ACh; NE or prostaglandin F2 alpha preconstriction) were greater in vessel rings from ET rats. However, dilatory responses by sodium nitroprusside (NE or prostaglandin F2 alpha preconstriction) and forskolin (NE preconstriction) were not different between groups, indicating that the augmented ACh-induced dilatory response resulted from an adaptation of the endothelium. Blockade of nitric oxide synthase activity diminished ACh-induced vasodilation by 79 and 100% in SED and ET rats, respectively. These results indicate that training alters vasomotor function in rat abdominal aortas through adaptations of both endothelium and smooth muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.