Abstract

AimsExercise training (ET) has a cardioprotective effect and can alter the molecular response to myocardial infarction (MI). The Neuregulin 1 (NRG1)/ErbB signaling plays a critical role in cardiac repair and regeneration in the failing heart. We sought to investigate whether ET following MI could activate the NRG1/ErbB signaling and promote cardiac repair and regeneration. Main methodsMale Sprague-Dawley rats were used to establish the MI model. Exercise-trained animals were subjected to four weeks of exercise (16m/min, 50min/d, 5d/wk) following the surgery. AG1478 was used as an inhibitor of ErbB (1mg/kg body weight, administered i.v. every other day during the process of training). NRG1/ErbB signaling activation, cardiomyocyte (CM) proliferation and apoptosis were evaluated. Key findingsIn the exercise-trained rats, NRG1 expression was up-regulated and ErbB/PI3K/Akt signaling was activated compared with the MI group. In addition, ET preserved heart function accompanied with increased numbers of BrdU+ CMs, PCNA+ CMs and c-kit+ cells, and reduced apoptosis level in the MI rats. In contrast, blocking ErbB signaling by AG1478 attenuated the ET-induced cardiac repair and regeneration. SignificanceET up-regulates NRG1 expression and activates ErbB2, ErbB4 and PI3K/Akt signal transduction to promote cardiac repair through endogenous regeneration. Activation of ErbB may be an underlying mechanism for the ET-induced cardiac repair and regeneration following MI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.