Abstract

Right heart catheterization using exercise stress is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF) but carries the risk of the invasive procedure. We hypothesized that real-time cardiac magnetic resonance (RT-CMR) exercise imaging with pathophysiologic data at excellent temporal and spatial resolution may represent a contemporary noninvasive alternative for diagnosing HFpEF. The HFpEF-Stress trial (CMR Exercise Stress Testing in HFpEF; URL: https://www.clinicaltrials.gov; Unique identifier: NCT03260621. URL: https://dzhk.de/; Unique identifier: DZHK-17) prospectively recruited 75 patients with echocardiographic signs of diastolic dysfunction and dyspnea on exertion (E/e'>8, New York Heart Association class ≥II) to undergo echocardiography, right heart catheterization, and RT-CMR at rest and during exercise stress. HFpEF was defined according to pulmonary capillary wedge pressure (≥15 mm Hg at rest or ≥25 mm Hg during exercise stress). RT-CMR functional assessments included time-volume curves for total and early (1/3) diastolic left ventricular filling, left atrial (LA) emptying, and left ventricular/LA long axis strain. Patients with HFpEF (n=34; median pulmonary capillary wedge pressure at rest, 13 mm Hg; at stress, 27 mm Hg) had higher E/e' (12.5 versus 9.15), NT-proBNP (N-terminal pro-B-type natriuretic peptide; 255 versus 75 ng/L), and LA volume index (43.8 versus 36.2 mL/m2) compared with patients with noncardiac dyspnea (n=34; rest, 8 mm Hg; stress, 18 mm Hg; P≤0.001 for all). Seven patients were excluded because of the presence of non-HFpEF cardiac disease causing dyspnea on imaging. There were no differences in RT-CMR left ventricular total and early diastolic filling at rest and during exercise stress (P≥0.164) between patients with HFpEF and noncardiac dyspnea. RT-CMR revealed significantly impaired LA total and early (P<0.001) diastolic emptying in patients with HFpEF during exercise stress. RT-CMR exercise stress LA long axis strain was independently associated with HFpEF (adjusted odds ratio, 0.657 [95% CI, 0.516-0.838]; P=0.001) after adjustment for clinical and imaging measures and emerged as the best predictor for HFpEF (area under the curve at rest 0.82 versus exercise stress 0.93; P=0.029). RT-CMR allows highly accurate identification of HFpEF during physiologic exercise and qualifies as a suitable noninvasive diagnostic alternative. These results will need to be confirmed in multicenter prospective research studies to establish widespread routine clinical use. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03260621. URL: https://dzhk.de/; Unique identifier: DZHK-17.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.