Abstract

The objective of this study was to investigate the late cardiac effect of exercise preconditioning (EP) on the exhaustive exercise-induced myocardial injury in rats and the role of protein kinase C (PKC) in EP. Rats were subjected to a run on the treadmill for four periods of 10 min each at 30 m/min with intervening periods of rest of 10 min as an EP protocol. The exhaustive exercise was performed 24 h after EP. PKC inhibitor chelerythrine (CHE) was injected before EP. The results showed that EP increased the running ability of rats, and alleviated the exhaustive exercise-induced injury in cardiomyocytes, but pretreatment with PKC inhibitor CHE did not abolish the late phase cardioprotection of EP. A significant increase of PKCδ, both at the protein level and the mRNA level in the left ventricular myocardium of rats, accompanied by its activated form (phosphorylated on Thr507, p-PKCδThr507) translocated to intercalated disks and was found in the late phase of EP. This circumstance was not attenuated by CHE. These results suggested that a high level of PKCδ might be involved in cardioprotection against myocardial damage, but if activated PKCδ at reperfusion took on a key role in cardioprotection was still an outstanding question.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call