Abstract

Spinal cord injury (SCI) may cause changes that have damaging effects on sensation and functionality. However, methods for the significant amelioration of SCI-reduced nerve injury are lacking. Previous studies have indicated that reasonable and effective exercise may promote the recovery of injured nerves. Therefore, the aim of the present study was to investigate the ability of exercise to improve recovery following SCI and the underlying mechanism. A rat model was used to evaluate the effects of two different periods of exercise intervention on recovery following SCI. The exercise intervention comprised 15 or 30 min/day passive walking for 30 days. ELISA measurements were used to analysis the plasma levels of inflammatory cytokines. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to examine the levels of proteins and mRNAs associated with nuclear factor (NF)-κB-related signaling. In addition, histological examination and immunostaining were used to evaluate the neural injury and associated indicators. The results indicated that severe SCI induced a peripheral inflammatory response and increased the expression of inflammatory cytokines. In addition, the SCI-induced nerve injury was associated with increased glial fibrillary acidic protein (GFAP) expression and the upregulation of Toll-like receptor 4 (TLR4)/NF-κB signaling, which may further aggravate the inflammatory responses induced by SCI. However, the exercise intervention decreased SCI-induced GFAP expression and reduced the activation of the TLR4/NF-κB signaling pathway compared with that of SCI model rats that did not exercise. Furthermore, the exercise intervention inhibited the release of inflammatory cytokines into the serum. These results indicate that exercise treatment reduces inflammation and glial activation, and may be beneficial to recovery following SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.