Abstract
Purpose: In this study wearable global navigation satellite system units were used on athletes to investigate pacing patterns by describing exercise intensities in flat and uphill terrain during a simulated cross-country ski race.Methods: Eight well-trained male skiers (age: 23.0 ± 4.8 years, height: 183.8 ± 6.8 cm, weight: 77.1 ± 6.1 kg, VO2peak: 73 ± 5 mL⋅kg-1⋅min-1) completed a 13.5-km individual time trial outdoors and a standardized indoor treadmill protocol on roller skis. Positional data were recorded during the time trial using a differential global navigation satellite system to calculate external workloads in flat and uphill terrain. From treadmill tests, the individual relationships between oxygen consumption and external workload in flat (1°) and uphill (8°) terrain were determined, in addition to VO2peak and the maximal accumulated O2-deficit. To estimate the exercise intensity in the time trial, the O2-demand in two different flat and five different uphill sections was calculated by extrapolation of individual O2-consumption/workload ratios.Results: There was a significant interaction between section and average O2-demands, with higher O2-demands in the uphill sections (110–160% of VO2peak) than in the flat sections (≤100% of VO2peak) (p < 0.01). The maximal accumulated O2-deficit associated with uphill treadmill roller skiing was significantly higher compared to flat (6.2 ± 0.5 vs. 4.6 ± 0.5 L, p < 0.01), while no significant difference was found in VO2peak.Conclusion: Cross-country (XC) skiers repeatedly applied exercise intensities exceeding their maximal aerobic power. ΣO2-deficits were higher during uphill skiing compared to flat which has implications for the duration and magnitude of supramaximal work rates that can be applied in different types of terrain.
Highlights
Cross-country (XC) skiing is an endurance sport in which the goal is to cover a known distance in the shortest time possible
There were no significant differences in VO2peak, HRpeak, [La−], RER or rating of perceived exertion (RPE) between the two conditions
The principal findings were that in a XC distance race: (I) the skiers frequently applied exercise intensities exceeding their peak aerobic power and exercise intensity was higher in uphill compared to flat terrain; (II) the skiers applied a variable pacing pattern, evidenced by significant changes in exercise intensity; (III) while peak aerobic power in flat and uphill skiing were similar, the O2-deficit during uphill skiing were greater compared to flat
Summary
Cross-country (XC) skiing is an endurance sport in which the goal is to cover a known distance in the shortest time possible. An even pacing pattern is regarded as optimal for performance in endurance sports events with durations > 2 min, where athletes race against the clock over a known distance (Abbiss and Laursen, 2008). Describing pacing patterns in terms of lap-by-lap comparisons in sports where course topography changes substantially are insufficient due to the non-constant relationship between speed, external work rate, and thereby metabolic energy demand. Describing such pacing patterns in a sport such as XC skiing, demands alternative methods where the total energy turnover could be estimated
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.