Abstract

ObjectivesRedox homeostasis and redox-sensitive protein signaling play a role in exercise-induced adaptation. The effects of sprint-interval exercise (SIE), high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE), on post-exercise plasma redox status are unclear. Furthermore, whether post-exercise plasma redox status reflects skeletal muscle redox-sensitive protein signaling is unknown. DesignIn a randomized crossover design, eight healthy adults performed a cycling session of HIIE (5×4min at 75% Wmax), SIE (4×30s Wingate’s), and CMIE work-matched to HIIE (30min at 50% of Wmax). MethodsPlasma hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) activity, and catalase activity were measured immediately post, 1h, 2h and 3h post-exercise. Plasma redox status biomarkers were correlated with phosphorylation of skeletal muscle p38-MAPK, JNK, NF-κB, and IκBα protein content immediately and 3h post-exercise. ResultsPlasma catalase activity was greater with SIE (56.6±3.8Uml−1) compared to CMIE (42.7±3.2, p<0.01) and HIIE (49.0±5.5, p=0.07). Peak plasma H2O2 was significantly (p<0.05) greater after SIE (4.6±0.6nmol/ml) and HIIE (4.1±0.4) compared to CMIE (3.3±0.5). Post-exercise plasma TBARS and SOD activity significantly (p<0.05) decreased irrespective of exercise protocol. A significant positive correlation was detected between plasma catalase activity and skeletal muscle p38-MAPK phosphorylation 3h post-exercise (r=0.40, p=0.04). No other correlations were detected (all p>0.05). ConclusionsLow-volume SIE elicited greater post-exercise plasma catalase activity compared to HIIE and CMIE, and greater H2O2 compared to CMIE. Plasma redox status did not, however, adequately reflect skeletal muscle redox-sensitive protein signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.