Abstract
Ischemia-reperfusion-induced calcium overload and production of reactive oxygen species can trigger apoptosis by promoting the release of proapoptotic factors via the mitochondrial permeability transition pore. While it is clear that endurance exercise provides cardioprotection against ischemia-reperfusion-induced injury, it is unknown if exercise training directly alters mitochondria phenotype and confers protection against apoptotic stimuli in both subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. We hypothesized that exercise training increases expression of endogenous antioxidant enzymes and other antiapoptotic proteins, resulting in a SS and IMF mitochondrial phenotype that resists apoptotic stimuli. Mitochondria isolated from hearts of sedentary (n = 8) and exercised-trained (n = 8) adult male rats were studied. Endurance exercise increased the protein levels of primary antioxidant enzymes in both SS and IMF mitochondria. Furthermore, exercise increased the levels of antiapoptotic proteins in the heart, including the apoptosis repressor with a caspase recruitment domain and inducible heat shock protein 70. Importantly, our findings reveal that endurance exercise training attenuates reactive oxygen species-induced cytochrome c release from heart mitochondria. These changes are accompanied by a lower maximal rate of mitochondrial permeability transition pore opening (V(max)) and prolonged time to V(max) in both SS and IMF cardiac mitochondria. These novel findings reveal that endurance exercise promotes biochemical alterations in cardiac SS and IMF mitochondria, resulting in a phenotype that resists apoptotic stimuli. Furthermore, these results are consistent with the concept that exercise-induced mitochondrial adaptations contribute to exercise-induced cardioprotection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.