Abstract

Prolonged oxidative stress is detrimental to health; however, transient oxidative stress may improve immune capability. We examined whether exercise-induced increases in the plasma oxidative generating capability enhance immune responsiveness to potential pathogens. Twelve individuals underwent a 30-min row and pre and post-exercise bloods were collected for oxidative stress and immune assessment. We found that exercise induced a transient increase in plasma carbonyls (3.2-5.3 nmol/mg protein) and creatine kinase activity (0.5-1.2 absorbance/min/mg protein) and that lipopolysaccharide (LPS) stimulation (0.5-24 h) of pre- and post-exercise blood augmented temporal tumour necrosis factor-alpha (TNFalpha) secretion. Further characterisation of plasma using a modified dihydro-2',7'-dichlorohydrofluorescein (DCF) assay revealed that addition of a sub-threshold of hydrogen peroxide to post-exercise (and not pre-exercise) plasma caused a sixfold increase in the radical oxygen species (ROS) generating capability after 15 min (555 +/- 131 to 3607 +/- 488 change in fluorescent intensity [DeltaFI]), which was inhibited using 60 mM N-acetyl-L: -cysteine (920 +/- 154 DeltaFI). Furthermore, cell experiments revealed that LPS stimulation of either THP-1 cells pre-incubated with post-exercise plasma or peripheral blood mononuclear cells pre-treated with pro-oxidants, modulated the temporal secretion of key cytokines that regulate the initiation, progression and resolution of an inflammatory response. These results indicate that exercise-induced changes in plasma parameters (e.g. oxidative generating capability-dependent or independent of inflammatory mediators) augment the temporal LPS response and support the notion that repeated transient oxidative stress (such as that induced by regular exercise) is important for a "healthy" immune system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.