Abstract

Vascular endothelial growth factor (VEGF) is a growth factor demonstrated to be a key factor in cerebral angiogenesis and neurogenesis. It has been considered a critical component in hippocampus neurogenesis and memory formation and has been observed to increase in the rat hippocampus after exercise. We previously found increased VEGF levels in experimental chronic hydrocephalus in several brain areas and cerebrospinal fluid (CSF), suggesting a role in the adaption to chronic hypoxia. Here we investigate the ability of moderate exercise to increase CSF-VEGF levels in adult chronic hydrocephalus patients. Lumbar CSF samples were collected from 17 normal pressure hydrocephalus patients. During CSF collection, 11 patients (exercise group) underwent a standard in-room occupational therapy session; six patients (no-exercise group) did not undergo a physical therapy session. CSF-VEGF levels were evaluated for increase related to exercise and the clinical response to CSF drainage. CSF-VEGF levels in the exercise group demonstrated significant increases 1–3hours post-exercise compared with the levels 1–2hours pre-exercise (p=0.04), and also showed significantly higher levels than the no-exercise groups (p=0.03). The post-exercise CSF-VEGF level in the group that did not clinically improve was significantly higher than both their own pre-exercise level (p=0.02) and that seen in the clinically improving group (p=0.05) after exercise. We conclude that CSF-VEGF levels can increase after moderate exercise even in elderly hydrocephalus patients. This suggests that a potential benefit of exercise, especially in CSF drainage non-improved patients, may exist via a central VEGF mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.