Abstract

This study determined the effects of exercise on the ability of inflammatory macrophages to inhibit tumor cell growth in vitro (macrophage cytotoxicity). Thioglycollate injection (1 ml ip) was used as an inflammatory challenge and to partially activate macrophages for cytotoxicity. Inbred male C3H/HeN mice (n = 180) exercised moderately (MOD, 18 m/min, 30 min/day, 5% grade) or to exhaustion (EXH, 18-35 m/min, 2-4 h, 5% grade) on a motor-driven treadmill for 3 consecutive days after injection. Control (CON) mice were kept in stimulated treadmill lanes directly over the runners. Mice were killed immediately or 3 or 8 h postexercise. Macrophages from both MOD and EXH exercise groups manifested significantly (P < 0.05) enhanced (approximately 50%) cytotoxicity compared with those from CON group at all time points postexercise. This potentially beneficial exercise effect was not related to macrophage production of interleukin-1 beta, reactive nitrogen or oxygen intermediates, or number of macrophages in the assay but may have been manifested, in part, by tumor necrosis factor-alpha. Plasma corticosterone was significantly elevated immediately postexercise in MOD and EXH compared with CON mice; however, no evidence existed for an immuno-suppressive effect of corticosterone on macrophage cytotoxicity, perhaps because of insensitivity of inflammatory macrophages to glucocorticoid suppression seen in vitro. These data only partially support the "inverted U hypothesis," which states that moderate exercise may enhance, whereas very heavy exercise or a lack of exercise may attenuate, the immune response. Further study is needed to determine the physiological significance of these findings and the effects of exercise on macrophage subsets sensitive to glucocorticoid suppression (i.e., fully activated macrophages).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.