Abstract

Previous studies indicated that intensity level may be a determining factor in the beneficial or detrimental effects of exercise on spatial memory, as chronic low-intensity level exercise appears to enhance learning and memory which stressful situations may impair. This study examines the effects of different intensity levels of acute exercise (treadmill running) on spatial memory in rats. Using the Morris water maze, spatial learning was measured in animals exposed to treadmill running at low- (20–22 m/min for 25 min daily) and high-intensity (25 m/min for 25 min daily) levels of exercise. A stress control using an electric foot shock was used to examine if the high-intensity exercise was sufficient to serve as a stressor. Stress level was estimated by examining tail flick latencies as a measure of stress-induced analgesia. The results indicate that high-intensity exercise at a level that may not induce an analgesic state is sufficient to impair early acquisition of spatial learning. However, with additional trials, all animals are capable of learning the task. Acute exposure to the electric foot shock impaired learning in the Morris water maze. Surprisingly, across all studies, there was a significantly higher analgesic state post-swim as compared to pre-swim. The results indicate that irrespective of stress level prior to water maze testing, swimming in the Morris water maze repeatedly for short durations of time is enough to induce an analgesic state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call