Abstract
Exercise hypertension independently predicts cardiovascular mortality, although little is known about exercise central hemodynamics. This study aimed to determine the contribution of arterial wave travel and aortic reservoir characteristics to central blood pressure (BP) during exercise. We hypothesized that exercise central BP would be principally related to forward wave travel and aortic reservoir function. After routine diagnostic coronary angiography, invasive pressure and flow velocity were recorded in the ascending aorta via sensor-tipped intra-arterial wires in 10 participants (age, 55±10 years; 70% men) free of coronary artery disease with normal left ventricular function. Measures were recorded at baseline and during supine cycle ergometry. Using wave intensity analysis, dominant wave types throughout the cardiac cycle were identified (forward and backward, compression, and decompression), and aortic reservoir and excess pressure were calculated. Central systolic BP increased significantly with exercise (Δ=19±12 mm Hg; P<0.001). This was associated with increases in systolic forward compression waves (Δ=12×10(6)±17×10(6) W·m(-2)·s(-1); P=0.045) and forward decompression waves in late systole (Δ=9×10(6)±6×10(6) W·m(-2)·s(-1); P<0.001). Despite significant augmentation in BP (Δ=9±6 mm Hg; P=0.002), reflected waves did not increase in magnitude (Δ=-1×10(6)±3×10(6) W·m(-2)·s(-1); P=0.2). Excess pressure rose significantly with exercise (Δ=16±9 mm Hg; P<0.001), and reservoir pressure integral fell (Δ=-5×10(5)±5×10(5) Pa·s; P=0.010). Change in reflection coefficient negatively correlated with change in central systolic BP (r=-0.68; P=0.03). We conclude that elevation of exercise central BP is principally because of increases in aortic forward traveling waves generated by left ventricular ejection. These findings have relevance to understanding central BP waveform morphology and pathophysiology of exercise hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.