Abstract

Wheel-running exercise in laboratory rodents (animal model useful to study the neurobiology of aerobic exercise) decreases behavioural markers of vulnerability to addictive properties of various drugs of abuse including cocaine. However, neurobiological mechanisms underpinning this protective effect are far from fully characterized. Here, 28-day-old female C57BL/6J mice were housed with (n = 48) or without (n = 48) a running wheel for 6 weeks before being tested for acute locomotor responsiveness and initiation of locomotor sensitization to intraperitoneal injections of 8 mg/kg cocaine. The long-term expression of sensitization took place 3 weeks after the last session. On the day after, all mice underwent a micro-PET imaging session with [18F]fallypride radiotracer (dopamine 2/3 receptors antagonist). Exercised mice were less sensitive to acute and sensitized cocaine hyperlocomotor effects, such attenuation being particularly well marked for long-term expression of sensitization (η2P = 0.262). Chronic administration of cocaine was associated with a clear-cut increase of [18F]fallypride binding potential in mouse striatum (η2P = 0.170) while wheel-running exercise was associated with a moderate decrease in dopamine 2/3 receptors density in striatum (η2P = 0.075), a mechanism that might contribute to protective properties of exercise against drugs of abuse vulnerability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call