Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 is a long-acting analog of GLP-1, which stimulates insulin secretion and is clinically used in the treatment of type 2 diabetes. Previous studies have demonstrated that GLP-1 agonists and analogs serve as cardioprotective factors in various conditions. Disturbances in calcium cycling are characteristic of heart failure (HF); therefore, the aim of this study was to investigate the effect of exendin-4 (a GLP-1 mimetic) on the regulation of calcium handling and to identify the underlying mechanisms in an HF rat model after myocardial infarction (MI). Rats underwent surgical ligation of the left anterior descending coronary artery or sham surgery prior to infusion with vehicle, exendin-4, or exendin-4 and exendin9-39 for 4 weeks. Exendin-4 treatment decreased MI size, suppressed chamber dilation, myocyte hypertrophy, and fibrosis and improved in vivo heart function in the rats subjected to MI. Exendin-4 resulted in an increase in circulating GLP-1 and GLP-1R in ventricular tissues. Additionally, exendin-4 activated the eNOS/cGMP/PKG signaling pathway and inhibited the Ca2+/calmodulin-dependent kinase II (CaMKII) pathways. Myocytes isolated from exendin-4-treated hearts displayed higher Ca2+ transients, higher sarcoplasmic reticulum Ca2+ content, and higher l-type Ca2+ current densities than MI hearts. Exendin-4 treatment restored the protein expression of sarcoplasmic reticulum Ca2+ uptake ATPase (SERCA2a), phosphorylated phospholamban (PLB) and Cav1.2 and decreased the levels of phosphorylated ryanodine receptor (RyR). Moreover, the favorable effects of exendin-4 were significantly inhibited by exendin9-39 (a GLP-1 receptor antagonist). Exendin-4 treatment of an HF rat model after MI inhibited cardiac and cardiomyocytes progressive remodeling. In addition, Ca2+ handling and its molecular modulation were also improved by exendin-4 treatment. The beneficial effects of exendin-4 on cardiac remodeling may be mediated through activation of the eNOS/cGMP/PKG pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.