Abstract

IntroductionTo determine if Exendin-4 could be a therapeutic agent for burn-induced hyperglycemia. Materials and methodsMale Balb/c mice received a bolus of Exendin-4 intraperitoneally immediately after 15% total body surface area scald injury. Tail glucose levels were recorded and T-cell functions were analyzed at 4 h and 24 h postburn (pb). Pancreatic pathology was observed consecutively. The secretions of cytokines were detected in serum, spleen, and lung. Apoptosis of splenic CD3+ T-cells was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometry. ResultsAlthough Exendin-4 could attenuate burn-induced hyperglycemia in mice at 4 h pb, it accelerated their survival dose dependently with progressive depletion of splenocyte number. T-cell function underwent two-phasic changes following Exendin-4 treatment. Compared to placebo mice, T-cell from Exendin-4–treated mice was manifested with increased proliferation, while decreased IL-2 secretion and lower ratio of IL-4/IFN-γ at 4 h pb. However, at 24 h pb, it showed decreased proliferation, while increased IL-2 secretion and higher ratio of IL-4/IFN-γ. Exendin-4 could elicit higher circulating IL-6 and IL-10 levels at 4 h pb, which were pronounced in the lung at 24 h pb. In the meanwhile, severe inflammation could be found in the pancreas. At 24 h pb, the numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling or caspase-3 positive cells and the apoptosis of CD3+ T-cells were significantly increased in the spleens of Exendin-4 mice relative to placebo mice. ConclusionsThese data support a pathogenic role of Exendin-4 signaling during thermal injury, warning against its clinical application in acute insults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call